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Protection of Life Insurance Companies

in a Market-Based Framework

Abstract:

In this article, we examine to what extent Life Insurance Policyholders can be de-

scribed as standard Bondholders. Our analysis extends the ideas of Bühlmann [2004], and

sequences the fundamental advances of Merton [1974], Longstaff and Schwartz [1995], and

Briys and de Varenne [1994, 2001]. In particular, we develop a setup where life insurance

policies are comparable to hybrid bonds but not to standard risky bonds (as done in most

papers dealing with the pricing of participating contracts). In this mixed framework,

policyholders are only partly protected against default consequences. Continuous and

discrete protections are also studied in an early default Black and Cox [1976] type setting.

A comparative analysis of the impact of various protection schemes on ruin probabilities

and severities of a Life Insurance company concludes this work.

Introduction

The recent failures of AIG and Yamato life are here to show, if necessary, that insurance

companies, as any firms, can go bankrupt. However, due to the particular nature of the

insurance business, its financial risk management is very specific. The last two decades

have seen the emergence of an increasing number of papers bridging the conceptual and

practical void between financial and actuarial theories. The new regulatory environment,

strongly inspired by anglo-american practices, has also called for further development of

market-based pricing tools. See in particular Ballotta, Esposito and Haberman [2006] for

a detailed account on the enforcement and implications of the new IAS/IFRS/Solvency

II norms and Bühlmann [2004] for an insight into market valuation.

The framework adopted here dates back to the analysis of the corporation initiated

by Merton [1974]. The essence of this approach is understanding equity as a call-option
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on the firm’s assets, and risky debt as the sum of risk free debt plus a short position

on a “default” put on the assets. This approach is also the one chosen by Briys and de

Varenne in their papers on life insurance (see their book [2001] for a general treatment)

or by Crouhy and Galai [1991] in their analysis of bank deposit regulation. It has been

extended, under an assumption of stochastic interest rates, by Bernard, Le Courtois and

Quittard-Pinon [2005] in the wider Black and Cox [1976] context that enlarges Merton’s

framework by considering that bankruptcy is possible at any moment. This study also

builds on the framework of Bühlmann [2004] where the relevance of replication arguments

is highlighted.

Among the related literature, we can cite Schweizer [2001] who proposes a financial

valuation principle that is derived from traditional actuarial premium calculations, but at

the same time takes into consideration the possibility of trading in a financial market. In

a similar vein, Boyle and Tian [2008] take into account the profit margin and the safety

loading in the pricing of Equity Indexed Annuities. These contracts are very similar to

the participating policies we are studying. There is a minimum guaranteed rate and a

participating coefficient. These authors found that the premium paid by an investor is

never equal to the market value of the contract, because of the safety loading and profit

margin of the company. They propose to use for the pricing of such contracts a minimum

guaranteed rate and a participation coefficient lower than in a fair contract.

In this article, we question the idea that life insurance policyholders are short of a

default put on the insurer’s assets. In other words, we examine to what extent Life

Insurance Policyholders can be described as standard Bondholders, according to the lines

of Merton and followers. Indeed, it appears doubtful that participating policies can simply

be priced in terms of exotic bonds. In particular, we develop a setup where life insurance

policies are comparable to hybrid bonds but not to standard risky bonds (as done in most

papers dealing with the pricing of participating contracts). In this mixed framework,

policyholders are only partly protected against default consequences.

In the first section, we develop some general insights on the interrelationships between

default puts as they are conceived in Finance, and security loadings as they are understood
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in Insurance Markets. In particular, in the second section, we construct a mixed framework

where policyholders can be more or less protected against default consequences. Thus,

we consider life insurance contracts as hybrid debt where the importance of the security

loading is related to the importance of the debt/equity nature of contracts. The third

section is dedicated to its extension to the case when bankruptcy can happen at any

time. Continuous and discrete protection schemes are studied in this setting. The fourth

section proposes a comparison of three distinct types of protection: the mixed protection

introduced in this article, a protection consisting of a simple increase of the assets backing

the liabilities, and a protection made of Equity Default Swaps. In particular, the impact

of these protections on ruin probabilities and severities is analyzed.

1 Towards A Unified Framework

Firstly we review the basic principles of the so-called Mertonian theory of the firm, as

conceived by Merton [1974], Black and Cox [1976] and others. Then, we detail the stan-

dard applications of this theory in life insurance, as developed by Boyle and Schwartz

[1977], and Briys and de Varenne [1994], and extended by Bacinello [2001], Ballotta

[2008], Ballotta, Haberman and Wang [2006], Bernard, Le Courtois and Quittard-Pinon

[2005], among others. Finally, we question the direct application of the financial theory

to life insurance and propose a new paradigm where safety loadings play a central role.

1.1 The Classical Theory of the Firm in Market Finance

Merton [1974] applied the Black-Scholes-Merton model in the context of a simple corpo-

ration issuing risky zero-coupon bonds. This theory being orthodox financial foundation,

we shall discuss it only very briefly.

Let a simple company starting at time 0, being endowed with Equity E0, issuing

initially the amountD0 of zero-coupon bonds maturing at time T with a notional principal

K. E0 and D0 are invested in the lognormally distributed assets A0 (there is a unique

constant interest rate r). The balance sheet of this company is given in Table 1.
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Assets Liabilities

A0 E0

D0

Table 1: Initial Capital Structure of the Simple(st) Firm

Following Merton, Equity is a call option on the assets of the firm, with strike price

the principal K of the debt, and maturity the maturity T of the debt. In respect of

the debt, the risky zero-coupon bond is the sum of a risk-free zero-coupon bond and a

short position in a (so-called “default”) put on the assets of the firm, with strike price K

and maturity T . In other words, investors buy corporate bonds cheaper (than otherwise

equivalent Government bonds) as a consequence of their unlimited liability regarding a

possible bankruptcy. They sell a default put to the firm, and expect a positive spread

with respect to the Government interest rate as fair compensation.

At this point, two comments become necessary. First, the Mertonian approach can

be extended to the case of stochastic interest rates very easily, when the firm issues such

a simple debt profile. Second, default can occur only at the maturity of the risky zero-

coupon bonds. Indeed, in the situation where the assets process dives down between 0 and

T , it can be recognized that bankruptcy will most likely be declared before the maturity

of the debt. Allowing for and modeling such a situation is the work of Black and Cox

[1976].

The main contribution of the latter paper is shown under the following condition:

when the assets of the firm hit an ad hoc barrier, the firm defaults. This barrier can be of

any kind; very often it corresponds to the discounted value of the principal of the debt, see

Longstaff and Schwartz [1995] and Collin-Dufresne and Golstein [2001] for applications

in Finance. In conclusion, the Black and Cox framework extends the Merton analysis by

allowing bankruptcy to occur at any time during the life of the company. Of course, in

this framework, the debt becomes a path-dependent exotic optional position on the assets.

Now, our question becomes: how are the Merton and Black and Cox framework reflected

in the recent literature on life insurance theory?
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1.2 Current Use of the Financial Theory in Life Insurance

The first papers using financial theory in a life insurance context are those of Boyle and

Schwartz [1977] and Brennan and Schwartz [1976]. These authors value simple guarantees

as options, under a flat interest rates. Since then, various papers have appeared, including

the important contributions of Briys and de Varenne [1994] who more fully develop the

pricing of participating contracts. The contracts as considered by these authors pay well

defined bonuses, as opposed to the bonuses of with-profit contracts. Mortality is also not

considered, but this has no conceptual impact on the validity and interest of their papers,

provided it is assumed independent of interest rates.

The fundamental idea underlying the above-mentioned literature is that Merton’s cap-

ital structure of the corporation can be directly translated in insurance. This yields the

balance sheet in Table 2 below, where liabilities are composed of the initial capital E0 and

of the initial contribution L0 by policyholders. E0 and L0 together are invested in the

assets A0. The current literature assumes that policyholders (as opposed to stockhold-

ers) face full liability with respect to a possible bankruptcy. Thus, in the literature, life

insurance policyholders are identical to bondholders, and life insurance contracts can be

valued using the standard financial approach (pricing participating contracts then only

boils down to pricing particular exotic contracts).

Assets Liabilities

A0 E0

L0

Table 2: Initial Capital Structure of a Simple Life Office

We denote by α the proportion of assets initially owned by policyholders (α = L0/A0).

Consider for instance a participating contract guaranteeing at maturity the fixed amount

LgT and a participation rate δ. In a Mertonian framework (no early bankruptcy allowed),

it possess the simple payoff:

LgT + δ(αAT − LgT )+ − (LgT − AT )+ (1)
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From this expression, one readily understands what a participating contract is (within

the current paradigm): a guaranteed amount, plus a long position in a call on the assets,

plus a short position in a put on the identical assets. The call-option corresponds to the

participating bonus. The (short) put-option corresponds to a default put, as defined in

financial markets. Of course, similar decompositions hold for the Black and Cox [1976]

framework.

To recap, the current literature often assumes that policyholders, like any bondholders,

are short a default put on the company issuing their respective policies. In contrast,

we show throughout the remainder of this paper that policyholders’ and bondholders’

positions may actually differ. In this respect, safety loadings will be of utmost importance

to achieving a better understanding of this problem.

1.3 Adaptation of the Conceptual Paradigm

We start by building a modified optional framework for life insurance, where replication

arguments still hold, standard valuation methods are kept, but where the so-called “de-

fault puts” are questioned (i.e. where policyholders are no longer considered identical

to bondholders), and where the actuarial practice of safety loadings is introduced. To

summarize the problem, our concerns may be simply expressed in the following context:

Bondholders know they are betting on the insolvency probability of the firm. They

expect additional return to compensate for these risks. Policyholders (especially long-term

life insurance) aim at investing in default-free entities. Life companies thereby impose

safety loadings on insurance premia to compensate for bankruptcy potential.

An initial simplified approach could be: a life insurance company sells back the default

put to its policyholders. The payoff to policyholders is therefore always positive, no

bankruptcy is at present possible, in particular because the company charges much more

to policyholders at issuance, and due to replication arguments. This additional charge

can be interpreted as the safety loading. In the case of the participating contract, as
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considered in the previous subsection, its payoff could be written as follows:

LgT + δ(αAT − LgT )+ (2)

which amounts to a guarantee, plus a simple call option.

This interpretation of the default put already exists in Ballotta [2008], and is further

developed in Ballotta, Esposito and Haberman [2006]. However, the latter authors do

analyze the impact on the stability of the insurance company of actually charging poli-

cyholders the full price of the default put. In their paper, the probability of ruin is still

greater than 0 after policyholders pay the additional loading, since no investment strat-

egy is given or no guarantee has been bought. The safety loading is thus invested in the

general fund owned by the company, but no protection is directly constructed apart from

the increase of the initial fund. The company is thus still subject to potential default risk

(see section 4 for a comparison with other approaches).

In contrast, assuming the payoff (LgT −AT )+ can be perfectly duplicated in the market

(see the final section of this article for example) and the company initially buys an ad

hoc put, default risk disappears and the default probability becomes nil. Everything

would appear improved under this alternative framework; however, we wish to point out

an important problem. Charging the insured an extra charge diminishes their return

on investment. For commercial reasons it seems unlikely that the aforementioned safety

loading should be fully charged. Risk-return considerations are just as important for

people investing in life insurance contracts. Our opinion is that policyholders invest in

policies that are more or less protected, depending on their risk and return preferences. On

the other hand, Life Offices will guarantee the insured’s amount fully, or partly, depending

on how much security loading they may levy.

Returning to the problem dealt with in this subsection, our proposed solution is that

life insurance companies sell back a portion of the default put to policyholders, but that

this part may not be unitary. The higher the portion of the default put sold back, the

higher the corresponding security loading. To make this even more explicit, we construct

a simple linear model of default puts / security loadings where a protection coefficient ψ

7



is introduced. PSI stands for Policyholder’S Immunization coefficient. When ψ is equal

to zero, the default put is not sold back to policyholders; they remain entirely short of the

default put. This is simply the implicit assumption as taken from the existing literature.

When ψ is equal to one, the security loading is complete and the whole default put is

consequently sold back to policyholders. In this situation, the contract offers a much

lower return than under the preceding situation (i.e. the contract is very secure, but very

expensive). Our opinion is that the factor ψ has to be strictly bounded between 0 and 1

to model adequately existing insurance practices.

Thus we introduced the parameter ψ that describes the amount of security loading

charged by a life insurance company, and we observe that it is proportional to the amount

of default put sold back to policyholders. This parameter appears in the payoff as follows:

LgT + δ(αAT − LgT )+ − (1 − ψ) × (LgT − AT )+ (3)

where if ψ = 0, one returns to the risky situation, as described by formula (1), and if ψ = 1,

one arrives at the case of the risk-free but excessively expensive (from the policyholders’

viewpoint) situation described in formula (2).

Whatever the value of ψ, we are working with a company whose capital structure can

be written down as in Table 3, where S0 is the market value of the safety loading. On the

assets side, one can easily imagine that the new line corresponding to S0 is a derivative

position protecting the managed portfolio (corresponding to A0). On the liability side, the

bankruptcy protection is ultimately assigned to policyholders, since it is of no relevance

to shareholders.

Assets Liabilities

A0 E0 = (1 − α)A0

S0 L0 = αA0 + S0

Table 3: Initial Capital Structure of a Life Office

The next two sections will examine the impact of this approach 1 on the pricing of

1The pricing methodologies used throughout the article are not new. Lots of papers already addressed
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standard participating contracts, both in the Merton and Black and Cox contexts. We

start with the simplest situation: default being only possible at maturity.

2 Safety Loadings and Default Puts under the Mer-

ton Paradigm

In this section, we consider a company issuing simple participating contracts, and we

assume that default can occur only on the maturity of these contracts. For the sake of

generality we consider stochastic interest rates. Since default can occur only at maturity,

we use a Merton-type framework. We first recall the treatment of standard approaches,

and then come to the new approach introduced in this article.

2.1 Defaultable Insurance Policies

Consider a participating contract where we keep the notation introduced in the previous

section. As before, AT is the final value of the assets, LgT is the guaranteed amount,

also taken at time T (the guarantee is assumed to be deterministic with respect to time

and thus constant at expiry time T ). The parameter α gives the initial leverage of the

company, δ is the bonus coefficient, and r is the interest rate stochastic process. We also

suppose that a unique premium is initially paid by policyholders to the life insurance

company: in this framework, cash flows can occur only at time 0 and at maturity T .

The payoff of this standard participating contract can be expressed as:

ΘL(T ) =






AT if AT < LgT

LgT if LgT ≤ AT ≤ L
g
T

α

LgT + δ(αAT − LgT ) if AT >
L

g
T

α

the pricing issues of participating contracts. Our contribution is a general reflection on these previous
works. We propose a way to model the safety loadings that should be charged to policyholders and to
explain heterogeneity of prices observable in the real market.
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where in the first state bankruptcy is declared and policyholders recover the residual asset

value, in the second state only the guaranteed amount is distributed, and in the third -

beneficial - situation, a bonus is offered in addition to the guaranteed amount.

The above payoff can be concisely written as:

ΘL(T ) = LgT + δ(αAT − LgT )+ − (LgT − AT )+ (4)

where one recognizes a long call on the assets (bonus) and a short put on the same assets

(default put). This is also the correspondent formula (1).

In a stochastic interest rate environment, the value V0 of the participating contract

can be obtained directly under the risk-neutral measure Q as:

V0 = EQ

[
e−

∫ T
0 rsds

(
LgT + δ (αAT − LgT )+ − (LgT − AT )+ ) ] (5)

To eliminate the stochastic discount factor, we move to the T -forward neutral universe.

V0 can then be expressed as:

V0 = P (0, T ) [LgT + δαE1 − δLgTE2 − LgTE3 + E4] (6)

where:

E1 = EQT

[
AT1

AT>
L

g
T

α

]
; E3 = QT [AT < LgT ] ;

E2 = QT

[
AT >

L
g
T

α

]
; E4 = EQT

[
AT1AT<L

g
T

]
;

where QT denotes the forward-neutral probability, and where E1, E2, E3, and E4 can be

computed in closed-form under the hypotheses given above. Indeed, we here assume that

the assets follow a geometric Brownian motion and we use a particular Hull and White

model for interest rates. The volatility structure is thus exponential. Given ν > 0 and

a > 0, can be written as:

σP (t, T ) =
ν

a

(
1 − e−a(T−t)

)
(7)
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Also note that under the risk-neutral probability measure Q, the assets value, At, and

the zero-coupon bond price with expiry date T , P (t, T ), follow the classical SDEs:






dAt

At
= rtdt+ σdZQ(t)

dP (t,T )
P (t,T )

= rtdt− σP (t, T )dZQ
1 (t)

(8)

where ZQ(t) and ZQ
1 (t) are Q-standard correlated Brownian motions (ρ is their correlation

coefficient). Similar expressions also hold in the forward-neutral universe.

We can now conclude in respect of the Ei’s. They can be simply expressed as:

E1 = Φ1

(
MT ;

√
VT ;

L
g
T

α

)
; E3 = N

(
ln(Lg

T)−MT√
VT

)
;

E2 = N

(
MT−ln

(
L
g
T
α

)

√
VT

)
; E4 = Φ2

(
MT ;

√
VT ; LgT

)
;

where MT and VT are the two moments of the lognormal distribution of AT e
−rgT :






Mt = ln
(

A0

P (0,t)

)
+ ν2

4a3 −
(
ν2

2a2 + ρσν

a
+ σ2

2
+ rg

)
t− ν2

4a3 e
−2at

(
ν2

2a3 + ρσν

a2

)
e−a(T−t) −

(
ν2

a3 + ρσν

a2

)
e−aT + ν2

2a3 e
−a(T+t),

Vt = 2ν ν+aρσ
a3 e−at − ν2

2a3 e
−2at − 3ν2

2a3 − 2ρσν
a2 +

(
σ2 + 2ρσν

a
+ ν2

a2

)
t,

where N is the c.d.f. of the centered reduced Gaussian distribution, and where Φ1 and

Φ2 are defined by:






Φ1(m;σ; a) = E[eX1eX>a] = exp
(
m+ σ2

2

)
N
(

m+σ2−ln(a)
σ

)

Φ2(m;σ; a) = E[eX1eX<a] = exp
(
m+ σ2

2

)
N
(

ln(a)−m−σ2

σ

) (9)

with X the Gaussian random variable following the N (m,σ2) distribution.

It is therefore easy to compute in closed-form the value of a participating contract,

even with stochastic interest rates, when default can occur (only) at maturity. Indeed,

what can only be questioned is the appropriateness of such an approach.

As claimed in the previous section, the specific participating contract becomes here a
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type of defaultable bond. However, policyholders may not want to take the position of

bondholders, and may require that the life insurance company protects itself from default.

Ultimately, the price of this type of protection will of course be borne by the investors who

call for it: i.e. policyholders. In the next section, we compute the financial consequences

for policyholders and consider a simplified framework where the company is safe and where

it utilizes a “full” safety loading.

2.2 Protected Insurance Policies

We now want to determine how to protect policyholders from a bankruptcy occurring

specifically at maturity. A financial protection w.r.t. a decrease in the value of the assets

is in fact a put option on the same assets A - with a strike of LgT and a maturity of T .

This put option is sold ultimately to policyholders, and this cancels out the short position

they have on the “default put”. In this particular setting, the price of protection is the

value of the underlying security loading.

Let us first have a look at how the analytics of our contract change when it is made

completely safe. Obviously the contract’s payoff becomes:

Θ̂L(T ) =






LgT if AT < LgT

LgT if LgT ≤ AT ≤ L
g
T

α

LgT + δ(αAT − LgT ) if AT >
L

g
T

α

(10)

where it can be seen that policyholders are, in all circumstances, truly guaranteed the

amount LgT . This yields a compact and straightforward expression for the anticipated

payoff:

Θ̂L(T ) = LgT + δ(αAT − LgT )+

Hence, the market value of the secured contract becomes:

V̂0 = EQ

[
e−

∫ T
0 rsds

(
LgT + δ(αAT − LgT )+

)]
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The secured contract’s premium V̂0 is paid at time 0 and is higher than the risky contract’s

premium V0 considered in subsection 2.1.

Keeping the assumptions of the previous subsection, one has for V̂0:

V̂0 = P (0, T ) [LgT + δαE1 − δLgTE2] (11)

Then, the initial value S0 of the safety loading (equal to the difference between the

value of the secured contract V̂0 and the risky one V0) is exactly matched by the initial

price of the Merton default put. In particular:

S0 = EQ

[
e−

∫ T
0 rsds (LgT − AT )+

]

which yields in closed-form:

S0 = P (0, T ) [LgTE3 − E4]

One readily finds: V̂0 = V0 + S0. We assume that V0, together with the initial invest-

ment of equityholders, is used to constitute the assets of the fund (A0 = V0 + E0), and

that S0 is used to buy a product yielding the payoff (LgT − AT )+ at time T on the market.

If this put on the assets can be found or duplicated in the market, the contract becomes

risk-free (its payoff is given by (10)) and the probability of bankruptcy nil. Another pos-

sibility is to invest V̂0 = V0 + S0 in the global fund along with the shareholders’s initial

investment. In the absence of an investment strategy, the default probability is reduced

but still positive (see Ballotta, Esposito and Haberman [2006]); thus the contract is still

risky.

Let us illustrate the previous discussion with a short numerical example. We specify

our model parameters in Table 4.

A0 σ T α a ν P (0, T ) ρ δ rg
100 10% 10 0.9 0.4 0.007 0.6703 -0.05 91.68% 2%

Table 4: Model Parameters
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First, A0 stands for the initial assets value of the issuing company. The assets’ volatility

σ is set at 10%, which corresponds to a standard investment (approximately half in stocks

and half in bonds). We assume that the contract maturity T is equal to ten years, and α is

the initial participation of the insured in the capital structure of the firm. The parameters

a, ν define the zero-coupon volatility, whilst ρ is the correlation coefficient between the

asset generating process and the instantaneous interest rate process. Finally rg is the

minimum guaranteed rate and δ is the participating coefficient.

These parameters are set to typical and reasonable values. We chose values for the

parameters close to the ones given in Charlier and Kleynen [2005], based on data from

the German market. A volatility of 10% corresponds typically to a portfolio comprised

of 40% bonds and 60% stocks, according to the former study. Given the different param-

eters of our framework, the parameters δ and rg are such that the risky contract sold to

policyholders is fair. So we set: V0 = αA0 = L0 = 90. Table 5 displays the participating

contract values computed using the parameters defined in the Table 4.

V0 V̂0 S0

90 92.42 2.42

Table 5: Results

At first sight, the initial premia of the two contracts V0 and V̂0 are close (with V̂0 =

V0 + S0). Yet, in relative terms, the two premia are not so close. Indeed, one can observe

that S0

V0
is approximately worth 2.7%. This is substantial considering the impact this

can have on the return of the product. A simple approximation would yield an impact

of 0.27% in terms of annual return (due to the 10Y maturity of the product), which

is compared against a 2% annual guaranteed rate. Indeed, making the company (or a

contract) safe is costly, and making it utterly safe is even more so. Of course, a higher

σ would entail a higher discrepancy between V0 and V̂0. Note that in anticipation of

the following subsection, protecting the investment completely has a cost that investors

might, or might not, want to bear in full.

To conclude our illustration, we plot in figure 1 the ratio S0

V0
with respect to the asset

volatility σ. Straightforwardly, for a riskier mix of assets, the bankruptcy probability
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Figure 1: S0

V0
w.r.t. σ

increases, and so does the safety loading and its ratio to the contract price. Therefore,

choosing a higher σ (investing more in stocks and less in bonds for instance) implies

levying higher security loadings. This represents of course common intuition.

The contract is here fully protected but the price of perfect coverage is relatively high

(having the effect of reducing the appeal of such a contract). In the coming subsection,

we consider a mixed situation where opportunity is introduced for smaller safety loadings.

We will see that this corresponds to a lower protection of the firm and the insured, and

this has an impact on the loss upon default.

2.3 Mixed Approach

We now describe a general linear framework where, upon bankruptcy, policyholders do

not recover the entire ‘guaranteed amount’, but are not completely penalized either by the

inferior performance of the assets. The goal of this framework is to model what happens

from the policyholders’ viewpoint when bankruptcy occurs, depending on the investment

and hedging strategy of the insurance company. The goal of this framework is not to

give direct investment recommendations ; instead our goal is to provide a better financial

understanding of the characteristics of the life insurance firm (section 4 will detail later on

the different alternatives an insurance company faces when it invests this safety loading).

We give the following payoffs in the mixed approach:
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̂̂
ΘL(T ) =






ψ LgT + (1 − ψ)AT if AT < LgT

LgT if LgT ≤ AT ≤ L
g
T

α

LgT + δ (αAT − LgT ) if AT >
L

g
T

α

In the first situation (AT < LgT ) a mixed amount of the asset value AT and of the

officially guaranteed amount LgT is recovered. This state corresponds to the instance

where the company could not avoid default, but could, by an appropriate investment

strategy, limit the severity of losses, and distribute back more than AT .

The above payoff can be written in the compact form below:

̂̂
ΘL(T ) = LgT + δ (αAT − LgT )+ − (1 − ψ) (LgT − AT )+ (12)

Both payoff expressions are general and return the expressions in subsections 2.1 and

2.2, by assuming respectively ψ = 0 and ψ = 1. It appears clearly in (12) that the

proportion ψ of the default put is sold back to policyholders (meaning that this amount

of default put is purchased on the open market by the company to protect itself).

The risk-neutral formula for the contract is obtained straightforwardly as:

̂̂
V 0(ψ) = EQ

[
e−

∫ T
0 rsds

(
LgT + δ (αAT − LgT )+ − (1 − ψ) (LgT − AT )+ ) ]

where the total default put is still valued according to:

S0 = EQ

[
e−

∫ T
0 rsds (LgT − AT )+

]

but where the safety loading becomes a fraction ψ of the default put:

̂̂
S0(ψ) = EQ

[
e−

∫ T
0 rsds ψ (LgT − AT )+

]
= ψS0 (13)

and where we have the obvious relationship:
̂̂
V 0 = V0 +

̂̂
S0.
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2.4 Degree of Policyholder’S Immunization

This subsection is devoted to different interpretations of the parameter ψ.

First we explain how it is possible to recover the safety loading coefficient ψ of a

given company. We omit the different costs related to the marketing of contracts and the

management of the company. V m
0 is the price at which a company sells the contract. The

market value of a risky contract was previously denoted by
̂̂
V 0. The amount V m

0 − ̂̂
V 0

is therefore the amount a policyholder spends in addition to the risky contract: it is the

safety loading S0 which in our framework is equal to ψ
̂̂
S0. Thus the simple formula holds:

ψm =
V m

0 − ̂̂
V 0(ψ = 0)

S0

where ψm is the target safety loading coefficient.

The parameter ψ can be a comparison tool between different lines of business or dif-

ferent contracts. Indeed, the higher ψ is, the more expensive the contract is. ψ represents

the level of safety loading and at the same time the default risk of the insurer. Indeed

customers are willing to buy more expensive contracts if these are safer ones.

Second, ψ might be interpreted as a static risk measure directly constrained by regu-

lators. Higher premia mean more protection is sought. Note that

ψS0 = ψE

[
e−

∫ T
0 rsds (LgT − AT )+

]
.

In case of default (that is AT < LgT ), the shortfall is LgT − AT . Thus ψS0 is directly

linked to the market value of the expected shortfall. This is an important quantity since

North American countries recently adopted the CTE (Conditional Tail Expectation) as

a criterion. The CTE is the expectation of the loss conditional on the fact that this loss

exceeds a limit (typically the Value-at-Risk of the distribution of the loss at some given

confidence level α). More details can be found in Hardy [2003], Chapter 9. However, this

expectation is done under the historical probability measure if it is used to estimate the

solvency capital requirement.
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It is interesting to have risk-based rather than flat premia, which is typically the

case when premia are independent of the particular features and risks embedded in the

product sold (for example when they are only proportional to the actuarial value). Note

that premia in our framework include assets’ risk (loadings increase if the assets volatility

σ increases) and credit risk (in direct proportion to the default put and the shortfall

expectation).

Third, rating agencies have clearly an important impact on ψ. Criteria are more and

more stringent and ratings also reflect the quality of risk management. Such strategies

are part of the evaluations of insurers (see Ingram [2006]). They are based on the way

insurers take into account risks in their corporate decision-making. For example, investors

will trust wealthy companies and will thus agree to pay them higher premia. Thus, two

companies might propose similar products at different though fair prices. The factor ψ

reflects the risk exposure of the company in a market where contract prices are compet-

itive. In some sense, it reflects the market value of the protection bought by companies.

Thus, similar contracts issued by differently managed companies can be sold at different

prices.

Fourth, our modeling of safety loadings also reveals the main difference between finan-

cial pricing and insurance pricing. In finance, the no-arbitrage principle holds and prices

are uniquely determined and independent of any preferences. In insurance, prices of sim-

ilar products might differ. Indeed, a risk averse insured prefers to invest in an expensive

policy (a policy issued by a more secure vehicle). Can we consider two products identical,

when they are identically denominated but sold by differently rated companies? Our an-

swer is no. There is in fact no contradiction between the uniqueness of prices in finance

and their apparent multiplicity in insurance. Again, similar products issued by companies

protected differently will have different prices. These products although similar can not

be considered identical (credit risk is the main difference between them).

We can consider that the parameter ψ also reflects the preference of the issuer since a

risk averse insurer will charge more. On the other hand, the risk averse insured are willing

to spend enough money when buying their contracts in order to make them safer, because
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they have no alternative strategies by which to hedge their risks (private investors cannot

enter the CDS market, for instance).

The model of this section is not completely realistic, because a company has to be

solvent at all times. In particular, the balance sheet of a company is closely monitored

by official control authorities. It has to be able to fulfill its commitments towards the

insured at any time and not only at maturity. The next section extends the protection of

life insurance companies to a continuous-time setting.

3 Safety Loadings and Default Puts under the Black

and Cox Paradigm

We extend our discussion to the general situation where default of the insurance company

can happen at any time (or more realistically on any given set of audit dates). From a

finance viewpoint, this corresponds to building a Black and Cox [1976] type model. We

study in this new context the pricing and properties of safety loadings, and, again, inter-

pret them in terms of default options. In fact, we assume a high frequency of regulatory

controls and take the continuous limit. To price policies a two-dimension algorithm is

necessary to capture the default time and stochastic interest rate effects; we use the one

given in Bernard, Le Courtois and Quittard-Pinon [2005] for our analysis.

3.1 Defaultable Insurance Policy

To start with, let us recall how the existing literature prices unprotected participating

contracts when default can happen at any time and interest rates are stochastic. Our

presentation relies on the expositions in Bernard, Le Courtois and Quittard-Pinon [2005,

2006] where the first paper is dedicated to the pricing of a standard participating contract

subject to a constant rate guarantee, and the second paper is devoted to the study of a

similar contract subject to a stochastic rate guarantee.

Now let there be, in all situations, a terminal amount LgT = L0e
rgT guaranteed at
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maturity T , where rg is the rate promised to the investors. Note that due to regulatory

constraints this rate is often significantly smaller than the rate on treasuries.

As far as the default barrier is concerned, it can be defined as:

Lgt = LgT e
−rg(T−t) (14)

which is the discounted value at rg of the terminal guaranteed amount.

On the other hand, the default barrier can also be constructed as follows:

Lgt = LgTP (t, T ) (15)

which is the terminal guaranteed amount discounted against a risk-free zero-coupon bond.

Note that the second instance constructed above imposes a smaller default barrier

than the first one. This is because rg is usually much smaller than a risk-free zero-coupon

bond rate; in other words e−rg(T−t) >> P (t, T ). Though P (t, T ) is stochastic, in general

it will never rise to the level of e−rg(T−t), due to the small value usually taken by rg.

Whether one considers a constant or stochastic interest rate guarantee, the default

time, in our continuous setting, is always defined as the first time the assets A cross Lg

(the default barrier described by one of the above expressions (14) or (15)), so:

τ = inf {s ∈ [0, T ], As < Lgs}

One immediately obtains the generic no-arbitrage price of a participating contract

under the risk-neutral probability:

Ṽ0 = EQ

[
e−

∫ T
0 rsds

(
LgT + δ (αAT − LgT )+)

1τ>T + e−
∫ τ
0 rsds Lgτ 1τ6T

]
(16)

Clearly, if τ > T , default did not happen, and the payoff LgT + δ (αAT − LgT )+, corre-

sponding to the minimum guarantee plus the participation bonus, is paid at the maturity

of the contract. The situation τ ≤ T describes either τ = T , default at maturity, or
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τ < T , early default. Restricting oneself to default at maturity reduces to a Merton

model, and then correspondingly formula (16) simplifies into (5), and we are once again

back to section 2.

What we want to study is the impact and modeling of the condition τ < T . In this

state, we suppose that the rebate Lgτ is paid upon bankruptcy, at the random stopping

time τ . This justifies the introduction of the second term in formula (16).

When the guaranteed rate is constant, as with (14), and under a Vasicek specification

of r, one can price (16) semi-explicitly as shown by Bernard, Le Courtois and Quittard-

Pinon [2005]. The same authors [2006] proved that with a stochastic guaranteed rate,

as with (15), formula (16) can be priced in closed-form, still within a Vasicek model of

interest rates.

The setting detailed here models and prices participating policies as it would do with

exotic bonds. The only difference with respect to subsection 2.1 is the introduction of

possible early default: the life insurance company can default at any time between issuance

and closing of the contracts, so this is necessarily a more realistic feature. Yet, we are

faced with the question of actuarial practices and safety loadings. The coming subsection

therefore describes how to protect life-insurance companies and policyholders, in a Black-

Cox-Vasicek framework.

3.2 Continuously Protected Insurance Policy

In the early default setting, pricing the default put is a complex path-dependent problem.

Indeed, two difficulties arise. The first one is technical, and related to the intrinsic valu-

ation of path-dependent exotic options. The second one is financial and in fact multiple:

is the company audited continuously or discretely (at the end of each year for instance)?

Does the company want to protect itself discretely or continuously between 0 and T?

How does it choose to protect itself and in what proportion? We start our analysis by

considering the case where default can happen continuously (at any time between 0 and

T ), and where the company aims at buying a continuous protection.
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The value of a fully protected (continuously between 0 and T , and therefore also at

T ) participating contract, is always worth:

V̂0 = EQ

[
e−

∫ T
0 rsds

(
LgT + δ (αAT − LgT )+)] (17)

which is the risk-neutral expectation of the guaranteed amount plus bonus, discounted at

the risk-free rate.

Theoretically, the price of the total continuous protection (denoted hereafter by G)

can be evaluated very easily. Indeed, it suffices to compute the difference between the

prices of the fully protected and continuously defaultable contracts. The total continuous

protection price is therefore the difference of (17) and (16), which yields after one or two

lines of simple calculus:

G0 = V̂0 − Ṽ0 = EQ

[(
e−

∫ T
0 rsds

(
LgT + δ (αAT − LgT )+)− e−

∫ τ
0 rsds Lgτ

)
1τ6T

]
(18)

When the barrier is stochastic and defined as in (15), formula (18) can be evaluated

in closed-form (see the Appendix for more detail). Working under this assumption, we

display our results in Table 6.

Ṽ0 V̂0 G0

91.34 92.42 1.08

Table 6: Results

Since the framework is unchanged, the totally protected contract’s price, V̂0, is still

worth 92.42: see Table 5 for a comparison with previous results. It is interesting to note

that Ṽ0 = 91.34, the value of the contract that is risky between 0 and T , is bigger than

the value V0 = 90 of the contract that is risky only at time T . There would seem to be

a paradox here: why would an apparently riskier contract (because of a possible default

between 0 and T ) be worth more than an apparently less risky contract (defaultable only

at maturity T )? The answer is simple: the first of these contracts is in fact the less

risky one. This is because early default limits the losses incurred by the company and
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the insured. The average cost upon default in the Black and Cox context (no surprise is

possible, since as soon as the assets are too low, the firm is immediately bankrupt) is less

than the average cost in the Merton framework (where one can discover, too late, at time

T , that the assets are extremely low). In other words the put hardly has the opportunity

to be “in the money” at maturity. Therefore, the premium of the protection or default

put is smaller in absolute value in the Black and Cox context w.r.t. the premium in the

Merton context. This is why the premium G0 = 1.08 is (less than half) smaller than the

premium S0 = 2.42.

Another important consequence can be deduced from our analysis. In the Merton

context, a contract defaulted at T only pays back AT , which can be significantly smaller

than LgT . The safety loading levied from the insured exists to reduce the severity of ruin

and to guarantee an effective amount LgT to the insured, even in the case of default (or

an amount between AT and LgT , where the proportionality coefficient is ψ). Here, in the

Black and Cox setting, because the company is immediately in bankruptcy, the insured

recover the guaranteed amount at the time of default τ . They suffer more from a wasted

opportunity (of continuing up to T and potentially receiving a bonus) than from a real

loss. The previous developments on ψ therefore do not hold. However, this parameter will

reappear in the coming paragraphs where the case of the discretely monitored company

is considered.

3.3 Discretely Protected Insurance Policy

Now, assume that the balance sheet of the company is monitored at the end of every year:

default can be declared only discretely on this set of dates. Therefore, the main concern

of the managers of the company is to avoid shortfalls of the assets at the end of each year.

An initial idea is to buy as many puts as there are years in the contract’s tenor. This

is the simplest way for the company to ensure that it will be solvent at every end of year:

each time, its assets A must be over the minimum guaranteed amount (that is Ati > Lgti).

The payoff of the protection just defined (being a simple series of put options) can be
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represented as follows:

e−
∫ t1
0 rsds

(
Lgt1 − At1

)+
+ e−

∫ t2
0 rsds

(
Lgt2 − At2

)+
+ .....+ e−

∫ tn
0 rsds

(
Lgtn − Atn

)+

Consider for the sake of example the ith put. It admits the following characteristics:

a maturity ti, a strike Lgti , a final Payoff
(
Lgti − Ati

)+
, and its underlying is of course A.

Let us now compute the value of, the representative ith put with a maturity ti:

EQ

[
e−

∫ ti
0 rsds

(
Lgti − Ati

)+]
= EQ

[
e−

∫ ti
0 rsdsP (ti, T )

(
LgT − Ati

P (ti, T )

)+
]

= P (0, T ) EQT




P (ti, T )

(
LgT − Ati

P (ti,T )

)+

P (ti, T )





= P (0, T ) EQT

[(
LgT − Ati

P (ti, T )

)+
]

recalling that LgT is a constant and that
Ati

P (ti,T )
can be cast in the form A0

P (0,T )
eNu−

<N>u
2 ,

where N is a martingale under QT and < N > its quadratic variation. This put can be

evaluated in closed-form very easily (see the Appendix for more details).

Parameters are chosen as in table 4. The company buys as many annual puts as there

are years left in the contract life, that is the company protects itself from default at each

year end. In this situation, the protection is very expensive and is equal to 6.85. Indeed,

this protection is redundant. Consider then that all the puts actually cover the first period

(0 to t1), all the puts except the first one cover the second period (t1 to t2), and so on.

Therefore another more refined strategy is necessary to protect the life insurance company

in the context of discrete monitoring.

In essence, the appropriate protection has to be path-dependent. Indeed, the dis-

counted payoff of such a protection can be defined as:

e−
∫ t1
0 rsds

(
Lgt1 − At1

)+
+ e−

∫ t2
0 rsds1At1>L

g
t1

(
Lgt2 − At2

)+
+

...+ e−
∫ tn
0 rsds1At1>L

g
t1
...Atn−1>L

g
tn−1

(
Lgtn − Atn

)+
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and the associated price can be computed by means of Monte Carlo simulations.

In the context of discrete monitoring, a surprise can happen at the end of a partic-

ular year, meaning that Ati << Lgti . On average, the surprise will be less flagrant than

waiting for the maturity T (the Merton case). Recall also that in a continuous moni-

toring situation, no surprise can happen (Black and Cox case, and considering diffusive

assets, of course). The first conclusion is that the price of the protection under discrete

monitoring should be intermediate between the ones under continuous monitoring and

terminal (at maturity) monitoring. The second conclusion is that because surprises are

possible under discrete monitoring, it should be possible to introduce a set of parameters

ψi, in full analogy with the developments of section 2.3. At this point, we believe that

it is unnecessary to repeat the same scheme. The ideas of the mixed framework can be

extended transparently and directly from the Merton case to the discrete monitoring one.

4 Protection in Practice

A question that often arises is: how can the protection be constructed using market

instruments? More precisely, can we find options, swaps or other similar products, in

order to directly build the default put and protect the company and the insured? This

is what is directly addressed in this section. We also study the impact of using market

instruments on the ruin probability, and on the severity of the ruin that the company can

incur. Finally, we conclude on the level of protection that the insured may desire.

4.1 Construction of the Protection

There are numerous market instruments that could, apparently, be used by an insurance

company such as the one studied in this text. However, when taking a closer look at

the possibilities markets offer, it turns out that, very often, the vanilla or slightly exotic

options that a life insurance company would consider buying are short maturity products

- typically with a one-year maturity. This is clearly not the horizon of an insurance

company (we do not consider the possibility of rolling over one-year-maturity derivatives

25



positions). On the other hand, swaps and swaptions are long term products, but they do

not necessarily possess payoffs directly meeting the needs of insurance companies.

We could conclude here that it is very difficult to find market instruments to recon-

struct the default put, but this would be erroneous. Indeed, a class of products emerged

a couple of years ago that possess excellent characteristics with respect to the problem at

hand. These products are called equity default swaps. They were created by JP Morgan

in 2000 and are in fact insurance policies on equity. Their name mimics the one of credit

default swaps, an older and extremely popular product which constitutes half the volume

of the credit derivatives market.

In this subsection, we describe the structure of an equity default swap (hereafter EDS),

which is typically the instrument that could be used to construct the default put of the

company studied in this article. We also give the structure of a credit default swap (here-

after CDS), which can enter upon in the protection of analogous life insurance companies.

In the next subsection we consider the impact of using EDSs or CDSs on the risk of the

company. Here, we also briefly discuss how the assets can be dynamically managed in or-

der to avoid buying protection in the market. Note though that this alternative approach,

which in fact boils down to replicating the put, is expensive since, to be efficient, to needs

a high frequency of rebalancing.

EDSs were created for similar reasons than CDSs. They provide protection against

a severe equity decline, whereas CDSs provide protection against credit events on a cor-

porate bond. Note that an equity fall of x% is an event well indentified, whereas credit

events are sometimes subject to controversy. EDSs share with CDSs the denomination

‘swap’. This is because the investor, who can be considered an insured party, pays his fee

in installments rather than as a lump sum. Typical payment periods are six months for

EDSs and three months for CDSs. Typical maturities are of five years for both products.

The other leg of the swap is the payment to the investor of a rebate when the critical event

happens: when the stock loses x% of its initial value - where x is fixed contractually - for

the EDS, or when a credit event occurs for the CDS. EDSs are structured so as to insure

very severe drawdowns of the underlying stock: a barrier at 70% of the initial stock value
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is commonplace. If this event happens, a constant rebate, usually 50% of the initial stock

value, is paid to the investor, and, of course, installments are ceased. As far as CDSs are

concerned, the rebate compensating for the underlying bond’s depreciation upon default

is proportional to the loss incured, not a constant.

To sum up, an EDS is merely a deeply out of the money digital put option. It

provides protection on equity in a way very suitable to the problem identified in this

article, and will be developed in more detail in the coming subsection. On the contrary,

CDSs provide protection against more specific triggering events: company bankruptcies,

and are therefore adapted to protect corporate bonds, when EDSs are designed to protect

stocks. For the sake of simplicity, we will concentrate on simple EDSs and CDSs, that

is on products providing protection on a unique stock, or on a unique bond. In practice,

insurance companies possess various stocks and bonds in their asset portfolios. Securitized

products exist which offer protection on groups of stocks or bonds: ECOs and CDOs.

CDOs, or collateralized debt obligations, are now popular products. They correspond to

the securitization and tranching of many different CDSs. ECOs, or equity collateralized

obligations, are their equity counterparts. EDSs possess the very important property

of being medium term products. As mentioned beforehand, their maturity is typically

five years, when more standard exotic options mature in a year or less. Therefore these

products are quite well adapted for hedging in the insurance business. If necessary, they

can be rolled over once or twice in order to match dynamically the maturity of the issued

participating contracts; yet, again, interestingly they offer a hedging horizon that is quite

long.

Another way to seek protection is to consider an active investment strategy. A lot of

work has been devoted to guaranteed funds, see for example Gerber and Pafumi [2000],

Basak [1995], El Karoui, Jeanblanc and Lacoste [2005]. A typical and popular strategy

is the so-called CPPI, standing for Constant Proportion Portfolio Insurance (see Black

and Perold [1992]). The idea is to take advantage of a bull market whilst guaranteeing

a minimum level at maturity if the market turns bearish. With the CPPI method, the

guaranteed portfolio is built on two financial assets: a risky one and a riskless one. The
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principle is to invest in the risky asset an amount proportional to the difference between

the protected fund value and a floor (F), which could be the present value of the guarantee.

The surplus is called the cushion (C), the proportional coefficient is called the multiplier

(m) and the amount of risky investment (mC) is the exposure. The multiplier (m) and

the floor (F) are strategic parameters that characterize this method. For a large class of

stochastic processes (modeling the risky asset dynamics), it is known that the portfolio

value is never less than the floor if continuous trading is assumed and general conditions

are satisfied. Thus the investor is sure to obtain at maturity at least the guarantee, in our

context LgT . If the asset price dynamics are governed by a geometric Brownian motion, the

cushion admits the same distribution, and the CPPI portfolio value can be expressed in

closed form. It is no longer linear in the risky asset price, but is expressed as an m-power

of its price (the options considered in this article would become power options in this

context). It should be noted that a perfect hedge is only possible if trading takes place

continuously. To be more realistic, discrete rebalancing must be introduced. In this new

setting the floor can be pierced and the investor, here the insured, is not entirely protected.

In this case there is no perfect hedging, nevertheless this new risk can be measured, for

example by the conditional tail expectation which can give a basis for the negotiation of

a reinsurance contract, or pave the way for the assessment of safety loadings.

4.2 Impact of the Protection

Collected premia depend on the market value of the protection being bought by the

company. We discussed earlier in the paper the case where the full default put is sold

back to policyholders. In that case, if the market is complete and assets are perfectly

replicated, the insurer buys the payoff (LgT − AT )+ and thus completely protects himself

against default. However in practice policyholders only partly buy the put: the insurer

has to choose how to invest this partial amount in the market.

We study in this subsection the impact of the chosen protection on the ruin probabil-

ity and severity of ruin of the insurance company. We consider for our illustration three

different settings, denoted by ‘a’, ‘b’ and ‘c’. Setting ‘a’ is a theoretical setting: it corre-
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sponds to the mixed approach studied in this article where the payoff ψ LgT +(1−ψ)AT is

recovered by policyholders in cases of default. In setting ‘a’, it is assumed that the levied

safety loading is invested in an ad hoc put option that can be found in the market.

Then, settings ‘b’ and ‘c’ offer practical alternatives, in case the default put mentioned

above cannot be found in the market. Setting ‘b’ explores a natural idea that can be found,

for example, in Ballotta, Esposito and Haberman [2006]. This idea is as follows: the safety

loading is simply invested in the fund at time 0, more stocks are purchased than without

the safety loading by the insurance company to constitute the assets. Finally, setting ‘c’

describes a protection by means of Equity Default Swaps. To simplify this exposition,

computations are done under deterministic interest rates, the maturity of contracts is

five years in all three settings, and the EDS’ premium is paid at inception and not by

installments.

First note that all the computations performed here are done in the historical world.

Reasonably, we are interested in real-world ruin probabilities and real-world losses. Re-

mark also that the precise price of the protection chosen is charged to policyholders, so

that the contract is in any case fair, and there is no cheating of policyholders by selling

a contract not protected as advertised. Also, in the following developments, we consider

situations where the fair price at time zero of a specified type of protection is charged to

the insured, and study the impact of a change of volatility on these situations.

Let us now give the expressions of the formulas of ruin probabilities and expected

losses under the three subsettings:

Setting a:

The ruin probability is simply P (AT < LgT ) where dAt

At
= µdt + σdzt, or equivalently

AT = A0e

(
µ−σ2

2

)
T+σzT . Note that the assets’ drift µ needs to be specified, which is

traditionally not the case in the risk-neutral world. z is a standard Brownian motion

under the historical measure. One thus readily has:

P (AT < LgT ) = N




ln
(
L

g
T

A0

)
− (µ− σ2

2
)T

σ
√
T




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In case of ruin, the loss incurred by the insured, which can be called severity of ruin,

is: LgT − (ψ LgT + (1 − ψ)AT ) = (1 − ψ)(LgT − AT ). This is the distance from the barrier,

at default. For comparison purposes, we define a severity of ruin that is expected and

discounted at time 0. So, our severity of ruin indicator will be defined by:

EP

(
e−rT (1 − ψ)(LgT − AT )1AT<L

g
T

)

A few lines of simple calculus show that this indicator is equal to:

e−rT (1 − ψ)

[
LgTP (AT < LgT ) − Φ2

(
ln(A0) +

(
µ− σ2

2

)
T, σ

√
T , LgT

)]

where φ2 is defined in (9).

Setting b:

In this setting, the safety loading Ŝ0 is not invested to buy a perfect default put, as in

setting ‘a’, but invested in the assets at time 0. In other words, the asset process starts

at A′
0 = A0 + Ŝ0 (this is the approach of Ballotta et al. [2006]). A′ constitutes the total

assets owned by the insurance company. A is only a part of these assets, on which the

contracts are based (for example, bonuses are computed on A, not on A′).

The probability of ruin becomes:

P (A′
T < LgT ) = N




ln
(
L

g
T

A′

0

)
− (µ− σ2

2
)T

σ
√
T





The loss upon default is worth LgT −A′
T , yielding a severity of ruin estimate from time 0:

EP

(
e−rT (LgT − A′

T )1A′

T<L
g
T

)

which can be developed as:

e−rT
[
LgTP (A′

T < LgT ) − Φ2

(
ln(A′

0) + (µ− σ2

2
)T, σ

√
T , LgT

)]
.
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Setting c:

In this setting, the safety loading Ŝ0 is invested in Equity Default Swaps. The underlying,

U , of an EDS is supposed to be representative of the assets of the insurance company,

and proportional to them, namely: ∀t Ut = ζAt where for a typical insurance company

0 < ζ << 1. We suppose that the insurance company buys φ EDSs (the case φ = 1
ζ

is

naturally the complete hedge of A).

Let us now give the payoff of the EDS position. As shown above, an EDS typically

pays U0/2 and terminates at the first time τ such that Uτ = 70% U0. If the underlying

does not touch the barrier set at 70% of its initial value, the contract terminates with null

value at maturity (the maturity of the EDS is set equal to T , maturity of the contracts

issued by the company). The no arbitrage price of the EDS position is therefore:

φ EQ

(
U0

2
e−rτ 1τ<T

)

where τ = inf{t < T | Ut = 0.7U0}. Note in passing that ‘Setting c’ is an intertemporal

setting, when ‘a’ and ‘b’ are not.

A simple proportionality argument yields τ = inf{t < T | At = 0.7A0}. As concerns

φ, it naturally satisfies:

Ŝ0 = φ EQ

(
ζ
A0

2
e−rτ 1τ<T

)
(19)

In the present situation, EDSs are bought to limit the severity of ruin beyond a certain

level. Ruin can occur in two different manners: at time τ if the company’s assets suffer

from a severe drawdown (in this situation EDSs are activated), or at time T if the assets

never touch the barrier but nevertheless end below LgT (in this situation EDSs are not

activated). This yields the following ruin probability:

P (τ < T ) + P (τ > T, AT < LgT )
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which can be readily expanded as:

N




ln
(
L

g
T

A0

)
−
(
µ− σ2

2

)
T

σ
√
T



+ e
(2µ−σ2) ln(0.7)

σ2 N




ln
(
A0

L
g
T

)
+ 2 ln(0.7) +

(
µ− σ2

2

)
T

σ
√
T





The severity of ruin indicator can be constructed as:

EP
(
e−rτ max ([Lgτ − (0.7A0 + φζA0)] , 0) 1τ<T

)
+ EP

(
e−rT [LgT − AT ]+ 1τ>T

)
(20)

where φζ is calibrated from the safety loading (see equation (19)) as follows:

φζ =
Ŝ0

EQ
(
A0

2
e−rτ 1τ<T

)

For the sake of brevity, we will not develop in full formula (20), but we will remark that

this severity of ruin can be obtained, for instance, using the distribution of τ under the

historical measure:

dPτ (t) =
ln(0.7)

σ
√

2πt3
exp



−

(
ln(0.7) −

(
µ− σ2

2

)
t
)2

2σ2t



1t≥0 dt.

Let us illustrate these three settings with a numerical example. For the sake of sim-

plicity, it is assumed that the assets are made of stocks (in the case of a mix of stocks

and bonds, the protection in setting ‘c’ would use both EDSs and CDSs). We consider a

contract whose fair price is V0 = 90; a safety loading equal to 1 is charged. The initial

total premium is thus 91.

A0 T α µ r S0 rg
100 5 0.9 6.5% 5% 1 3.5%

Table 7: Model Parameters

Table 7 gives the parameters used in our illustration. ψ is computed based on (13).

The value of the put option being 1.21 (based on the computation of the related risk-

neutral expression), and the safety loading being set to 1, one readily has ψ = 0.82. As

far as δ is concerned, it is set in order to make the contract fair, and therefore depends on
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the level of the volatility. Because the computations are done in the historical world, it is

necessary to specify the drift of the assets in the real world; here we chose µ = 6.5%.
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Figure 2: P (τ ≤ T ) w.r.t. σ
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Figure 3: Ruin severity w.r.t. σ

In Figure 2 we represent the ruin probability with respect to the volatility in the three

settings, while in Figure 3 we take a look at the severity of ruin, also w.r.t. the company’s

asset volatility. The amount of safety loading is of course the same in the three settings.

We observe from the graphs that ruin probabilities are comparable in the two settings

‘a’ and ‘b’, but that ruin severities are always lower when using default puts instead of

investing the safety loading in additional securities.

Let us now take a look at setting ‘c’. The ruin probability is higher using EDSs than

with other methods. However, one observes the following interesting feature: the ruin

severity is smaller with EDSs than with a reinvestment of the safety loading in the assets.

Figures 2 and 3 seem to suggest that the pattern of setting ‘a’, ‘b’ and ‘c’ are relatively

close for low volatility, but when the volatility is high, the severity of ruin in setting ‘b’

is higher. This might suggest that for high volatility regime, the investment in EDSs is a

good strategy compared to a safety loading fully invested in the assets.

To conclude, the smaller levels of ruin probability and severity are mostly obtained

with a protection made of put options. In case these put options are not available or

cannot be synthesized in the market, two situations arise. If the ruin probability is the

indicator to be minimized, then one should reinvest the safety loading in the assets, as in

Ballotta et al [2006]. If one is interested in minimizing the severity of ruin, then investing

in EDSs will be profitable. Note though that whatever the setting (and if charging only
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partly the default put), it will not be possible to avoid ruin with certainty.

4.3 How much Protection is Desired

The present article aims at assessing the market value of safety loadings given a degree of

protection ψ chosen by the insurer. We discussed the impact of choosing such and such

protection, in such and such quantity. However, we did not study how ψ, the degree of

protection chosen by the insurer, is determined - as this is not one of the goals of the

present paper. Let us now however briefly discuss this aspect.

Values of safety loadings are given in the risk-neutral universe, that is, in market value

and following the contemporaneous recommendations of regulators such as the IASB.

Their prices are arbitrage prices in a complete market, and are therefore completely inde-

pendent of agent preferences. We insist in the fact that everything cannot be computed

in the risk-neutral world whilst neglecting the company’s managers preferences. In par-

ticular, ψ is not the result of a risk-neutral computation: it is the result of a choice by

the managers of the insurance company (perhaps meeting the desires of investors aiming

at investing in a more or less risky product). This yields a simple criterion for computing

ψ, which can be seen as the solution of the following maximization problem:

max
ψ

(
EP

[
U

(
EQ

[
e−rT

̂̂
ΘL(T )

]
− e−rT

̂̂
ΘL(T )

)])

where we have the payoff at maturity:
̂̂
ΘL(T ) = LgT +δ (αAT −LgT )+−(1−ψ) (LgT −AT )+,

the total premium at time 0: EQ

[
e−rT

̂̂
ΘL(T )

]
, and a choice of utility function U for the

manager. This is a simplified way to deal with the choice of ψ. It might also involve costs,

the initial wealth of insurer and insured, and the insured’s preference V (usually through

a constraint on the expected utility of their final wealth). A more detailed estimation of

the parameter ψ is left for future research.
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Summary and Conclusions

This study is devoted to the calculation of appropriate premia and loadings for participat-

ing insurance contracts. We introduce safety loadings in close relationship to default puts

on insurance companies. These loadings reflect the asset and credit risks of underlying

products. This study also explains why different insurers sell similar contracts at differ-

ent prices (the difference being a credit risk premium). Loadings may depend on various

features, such as the preference of the insurer or the insured, regulation, enterprise risk

management, ratings, and credit risk.

The developments of this article shed light on a variety of interesting problems: when

a product is reputedly guaranteed, is it indeed wholly guaranteed? What is the market

price of a guarantee underlying a life insurance contract? What is the relationship between

safety loadings and default puts? How can the financial default framework be applied to

insurance? How far is a policyholder differentiated from a bondholder (this is perhaps the

most important question, which we answer by means of the mixing parameter ψ)?

We also believe that the approach developed in this article can be applied in other

fields, like the one of bank deposit insurance. Indeed, Merton [1977, 1978] showed that

bank deposit guarantees are equivalent to default puts on the assets of the bank hosting

the deposits. In his first article, there is one final date for monitoring, whilst in the second

monitoring can occur at any time and is driven by a Poisson distribution. There are some

clear analogies between the guarantees of bank deposits and the guarantees attached

to contracts like the ones studied in this article (see also Crouhy and Galai [1991]). Our

conclusion - via this example of bank deposit guarantees - is that the developments within

this article can be of interest to other subfields of finance and insurance.
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Bühlmann, H. (2004): “Multidimensional Valuation,” Finance, 25, 15–29.

Charlier, E., and R. Kleynen (2005): “Fair Valuation of Guaranteed Contracts:

The Interaction between Assets and Liabilities,” CentER Discussion Paper No. 2005-

64. Available at SSRN: http://ssrn.com/abstract=722463.

Collin-Dufresne, P., and R. S. Goldstein (2001): “Do Credit Spreads Reflect

Stationary Leverage Ratios?,” Journal of Finance, 56(5), 1929–1957.

Crouhy, M., and D. Galai (1991): “A Contingent Claim Analysis of a Regulated

Depository Institution,” Journal of Banking and Finance, 15, 73–90.

De Felice, M., and F. Moriconi (2005): “Market Based Tools for Managing the Life

Insurance Company,” ASTIN Bulletin, 35(1), 79–111.

Doherty, N. A. (2000): Integrated Risk Management-Techniques and Strategies for

Managing Corporate Risk. New York: McGraw-Hill.

El Karoui, N., M. Jeanblanc, and V. Lacoste (2005): “Optimal Portfolio Manage-

ment with American Capital Guarantee,” Journal of Economic Dynamics and Control,

29, 449–468.

Gerber, H., and G. Pafumi (2000): “Pricing Dynamic Investment Fund Protection,”

North American Actuarial Journal, 4(2), 28–41.

Hardy, M. R. (2003): Investment Guarantees: Modelling and Risk Management for

Equity-Linked Life Insurance. Wiley.

Heath, D., R. Jarrow, and A. Morton (1992): “Bond Pricing and the Term Struc-

ture of Interest Rates: a New Methodology for Contingent Claims Valuation,” Econo-

metrica, 60, 77–105.

37



Ingram, D. N. (2006): “Standard & Poor’s Enterprise Risk Management Evaluation of

Insurers,” Risk Management, March.

Leland, Hayne E. (1980): “Who Should Buy Portfolio Insurance?,”Journal of Finance,

35(2), 581–594.

Longstaff, F. A., and E. S. Schwartz (1995): “A Simple Approach to Valuing Risky

Fixed and Floating Rate Debt,” Journal of Finance, 50(3), 789–820.

Merton, R. C. (1974): “On the Pricing of Corporate Debt: the Risk Structure of Interest

Rates,” Journal of finance, 29, 449–470.

(1977): “An Analytic Derivation of the Cost of Deposit Insurance and Loan

Guarantees,” Journal of Banking and Finance, 1, 3–11.

(1978): “On the Cost of Deposit Insurance when there are Surveillance Costs,”

Journal of Business, 51, 439–452.

Merton, R. C., and Z. Bodie (2005): “Design of Financial Systems: Towards a

Synthesis of Function and Structure,” Journal of Investment Management, 3(1), 1–23.

Nielsen, J. A., and K. Sandmann (1995): “Equity-linked Life Insurance: A Model

With Stochastic Interest Rates,” Insurance: Mathematics and Economics, 16, 225–253.

Schweizer, M. (2001): “From Actuarial to Financial Valuation Principles,” Insurance:

Mathematics and Economics, 28, 31–47.

Tanskanen, A., and J. Lukkarinen (2003): “Fair Valuation of Path-Dependent Par-

ticipating Life Insurance Contracts,” Insurance: Mathematics and Economics, 33, 595–

609.

38



Appendix

Computation of G0

Recall that:

G0 = V̂0 − Ṽ0 = EQ

[(
e−

∫ T
0 rsds

(
LgT + δ (αAT − LgT )+)− e−

∫ τ
0 rsds Lgτ

)
1τ6T

]
(21)

Then:

G0 = P (0, T )LgT QT (τ 6 T ) + P (0, T ) δ αEQT

[
AT1

AT>
L

g
T

α
,τ6T

]

− P (0, T ) δ LgT EQT

[
AT >

LgT
α
, τ 6 T

]
− LgT QT (τ 6 T ) (22)

The main difficulty here is to show that EQ

[
e−

∫ τ
0 rsds Lgτ 1τ6T

]
= P (0, T )LgT QT (τ 6 T )

because the passage from the risk-neutral probability to the forward-neutral one is direct
in the first part of formula (21) and simply stems from the definition of these two worlds.

Indeed, one can write:

EQ

[
e−

∫ τ
0 rsds Lgτ 1τ6T

]
= LgT EQ

[
e−

∫ τ
0 rsds P (τ, T )1τ6T

]

where the payoff of P (τ, T )1τ6T is discounted from τ to 0.

Taking as a new numéraire P (. , T ), one can write under QT :

EQ

[
e−

∫ τ
0 rsds Lgτ 1τ6T

]
= LgT P (0, T ) EQT

[
P (τ, T )1τ6T
P (τ, T )

]

which immediately simplifies to:

EQ

[
e−

∫ τ
0 rsds Lgτ 1τ6T

]
= LgT P (0, T ) QT (τ 6 T )

and then the result obtains.

Thanks to time change techniques, we obtain closed-form formulas for the three un-
known terms in formula (22). To simplify notations, we use the auxiliary functions η+

and η− defined by the following expressions:

η+(x) = N

(
ln(x) + 1

2
ξ(T)

√
ξ(T)

)
and η−(x) = N

(
ln(x) − 1

2
ξ(T)

√
ξ(T)

)

where N denotes the cumulative standard normal distribution function.





QT (τ 6 T ) = η+(αP (0, T )ergT ) + 1
αP (0,T )ergT η−(αP (0, T )ergT )

EQT

[
AT1

AT>
l
g
T
α

1τ6T

]
= LgT η

+(α2P (0, T )ergT )

QT

[
AT >

l
g
T

α
, τ 6 T

]
= 1

αP (0,T )ergT η−(α2P (0, T )ergT )

(23)
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Computation of the discrete protection

Let us define by E :

E = P (0, T )EQT

[(
LgT − Ati

P (ti, T )

)+
]

Note that:
Au

P (u, T )
=

A0

P (0, T )
eNu−

1
2
ξ(u), (24)

where the differential of N is defined by:

dNs = (σP (s, T ) + ρσ) dZQT

1 (s) + σ
√

1 − ρ2 dZQT

2 (s), (25)

and the quadratic variation of N is:

ξ(u) =< N >u =

∫ u

0

[(σP (s, T ) + ρσ)2 + σ2(1 − ρ2)]ds. (26)

We prove below how to obtain the following closed form of E using Girsanov’s theorem
and time change techniques:

E = P (0, T )LgT N




ln
(

P(0,T)Lg
T

A0

)
+ 1

2
ξ(ti)

√
ξ(ti)



 − A0N




ln
(

P(0,T)Lg
T

A0

)
− 1

2
ξ(ti)

√
ξ(ti)



 (27)

Let us first write E as:

E = P (0, T )

(
LgTQT

(
Ati

P (ti, T )
< LgT

)
− EQT

[
Ati

P (ti, T )
1{ Ati

P (ti,T )
<L

g
T

}

])

The key to the computation is the Dubins-Schwarz theorem (time change technique)
which states that there exists a unique QT -Brownian motion B such that:

∀u ∈ [0, T ] , Nu = N0 +Bξ(u). (28)

Using this representation theorem, we get a new expression of the two parts of the
expression E :

QT

(
Ati

P (ti, T )
< LgT

)
= QT

(
Nti −

1

2
ξ(ti) < ln

(
P (0, T )LgT

A0

))

EQT

[
Ati

P (ti, T )
1{ Ati

P (ti,T )
<L

g
T

}

]
=

A0

P (0, T )
EQT

[
eNti

− 1
2
ξ(ti)1{

Nti
− 1

2
ξ(ti)<ln

(
P (0,T )L

g
T

A0

)}

]

Since Nti − 1
2
ξ(ti) = Bξ(ti) − 1

2
ξ(ti) is a Gaussian variable, it is then straightforward to

obtain the formula (27) for E . �
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